Quick Guide to the Basic Operations and Exponents

The Basic Operations

There are four basic operations:

```
+ (addition) as in 6 + 2 = 8; the sum of 6 and 2 is 8.
-(subtraction) as in 6-2=4; the difference of 6 and 2 is 4.
\mathbf{x (multiplication) as in 6 < 2 = 12; the product of 6 and 2 is 12.}
/(division) as in 6/2=3; the quotient of 6 and 2 is 3.
```

Also you use parentheses () for grouping and sometimes multiplication.
Examples: $20-12-7=8-7=1 \ldots \quad$ while $20-(12-7)=20-5=15$

$$
\text { also, }(3+4)(6-2)=(7)(4)=7 \times 4=28
$$

$$
\text { also, } 3+(4)(6)-2=3+24-2=27-2=25
$$

Exponents:

There is one more: ^ (exponentiation), so there are five operations.
This last operation would give $6^{\wedge} 2$. This means " 6 to the power 2 ", or in other words:

$$
\left.6^{\wedge} 2=6 \times 6=36 \text {. (Remember, it's not just } 6 \times 2 .\right)
$$

The 6 is the base and the 2 is the exponent.
This is also called " 6 squared" ; it's the area of a square of side 6. (See square roots.)
Another example would be $3^{\wedge} 4=3 \times 3 \times 3 \times 3=9 \times 9=81$.
Example: Which is bigger, $4^{\wedge} 5$ or $5^{\wedge} 4$?

Answer:

$4^{\wedge} 5=4 \times 4 \times 4 \times 4 \times 4=16 \times 16 \times 4=256 \times 4=1024$, while
$5^{\wedge} 4=5 \times 5 \times 5 \times 5=25 \times 25=625$.
To answer the question, $4{ }^{\wedge} 5$ is bigger.
As a rule, the smaller number to the bigger power often (but not always) comes out bigger.
One important use of exponents is to express really large (or really small) numbers:
This is called scientific notation and uses powers of ten:
Example: $4560=4.56 * 10^{\wedge} 3$ and $0.00003802=3.802 * 10^{\wedge}(-5)$

